Short note

Level sructure in ²⁰⁶At

X.C. Feng¹, Y.X. Guo¹, X.H. Zhou¹, X.F. Sun¹, X.G. Lei¹, W.X. Huang¹, J.J. He¹, Z. Liu¹, Y.H. Zhang¹, S.F. Zhu¹, Y.X. Luo¹, S.X. Wen², G.J. Yuan², X.G. Wu²

¹ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, P.R. China

² China Insitute of Atomic Energy, Beijing 102413, P.R. China

Receieved: 13 September 1999 Communicated by B. Povh

Abstract. The high-spin states of ²⁰⁶At have been studied in the reaction ¹⁹⁷Au (¹²C, 3n) ²⁰⁶At at ¹²C energies from 60 to 80 MeV. In-beam measurements of γ -ray excitation functions, γ - γ -t coincidences, and γ -ray angular distributions were carried out with seven BGO(AC)HPGe detectors and one intrinsic Ge planar detector. A level scheme for ²⁰⁶At with 25 γ rays was established for the first time, including a 10⁻ isomer with a measured half-life of 410± 80 ns. The level scheme of ²⁰⁶At consists of two disconnected cascades, probably corresponding to the proton excitations and the neutron-hole excitations, respectively.

PACS. 23.20.Lv Gamma transition and level energies $-27.80 + w \quad 190 \le A \le 219$

For the nuclei near ²⁰⁸Pb with a few protons outside the Z=82 shell closure and a number of neutron holes in the N=126 closed shell, their level schemes exhibit a competition between proton excitations and neutron-hole excitations. [1-4] The level structure in ²⁰⁸At [1] is composed of two disconnected parts, which was formed by proton excitations corresponding to the proton excited states in ²¹⁰At [5], and neutron-hole excitations analogous to the neutronhole states in ²⁰⁶Bi [6], respectively [1]. Furthermore, the experiment results show that there is no direct preference for either type of excitation in ²⁰⁸At, but states with about the same spins occur at about the same energies. The two types of excitations without mixing have been also observed experimentally in the odd-even ^{201,203,205,207}At nuclei [2,3,4]. Therefore, it is interesting to extend the study to ^{206}At nucleus, for which no excited states were previously known.

The excited states in ²⁰⁶At were populated via the reaction ¹⁹⁷Au(¹²C, 3n)²⁰⁶At. The ¹²C beams were delivered from the 13-MV tandem accelerator at the China Institute of Atomic Energy in Beijing. In order to determine the optimum beam energy and identify transitions in ²⁰⁶At, first the excitation functions for producing γ rays were measured in the energy range 60-80 MeV using a 1 mg/cm² ¹⁹⁷Au target. Then the beam energy of 63 MeV, at which the yield of ²⁰⁶At was a maximum, was chosen to populate the high-spin states in ²⁰⁶At. In our later measurements, the thin ¹⁹⁷Au target was replaced by a thick natural Au target to increase the production of ²⁰⁶At. γ - γ t coincidence measurements were performed at this optimum beam energy with seven BGO(AC)HPGE detectors and one intrinsic-Ge planar detector which was used to detect the low energy photons. Here, t refers to the relative time difference between any two coincident γ rays detected within ± 300 ns. A total of 78×10^6 coincidence events were recorded event by event for off-line analysis. After accurate gain matching, the γ - γ coincidence data were sorted off-line according to the energies of the two γ rays into three $4K \times 4K$ matrixes with a prompt (-51ns < t < 51ns), a prior-prompt (-300ns < t < -51ns), and a postprompt (51ns < t < 300ns) time condition, respectively. In order to obtain information on the transition multipolarities, the γ -ray angular distributions were measured at six laboratory angles between 29° and 145° relative to the beam direction. The angular distribution coefficients, as well as the relative γ -ray intensities, were extracted from least-squares fits to the normalized photopeak areas.

Assignment of the observed γ rays to ²⁰⁶At was based on the γ -ray excitation functions and on the observation of γ -X and γ - γ coincidences. The excitation functions for some of the observed γ rays are shown in Fig. 1. The excitation functions for the 616 and 686 keV γ rays are centered at about 63 MeV ¹²C beam energy, shifting significantly from the peaks for the γ rays from ²⁰⁵At [7]. This along with the fact that the 616 and 686 keV γ rays were in coincidence with astatine K X rays measured with the planar detector, allows unambiguous assignments of these transitions to ²⁰⁶At. Based on coincidences with these intensive γ rays of ²⁰⁶At, some weak γ rays could also be assigned to ²⁰⁶At.

Three gated spectra were obtained for each of the γ rays studied, under prompt, prior-prompt, and post-

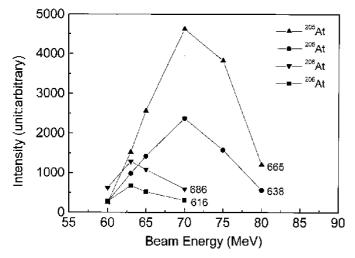
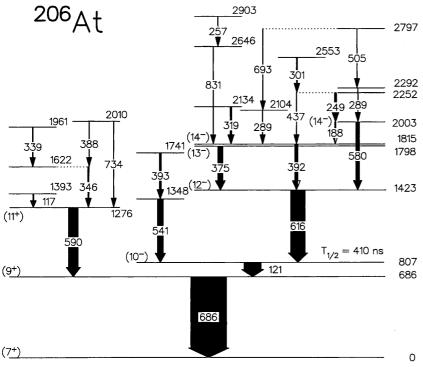


Fig. 1. Excitation functions for γ rays from products of the reaction $\rm ^{12}C+^{197}Au$


prompt coincidence time conditions. These spectra greatly helped to identify and locate the isomer of ²⁰⁶At, and to place transitions into a level scheme for ²⁰⁶At. In Fig. 2, coincidence spectra are shown as typical examples useful in the construction of the ²⁰⁶At level scheme. Fig. 2(a) shows the spectrum for γ rays within ±300 ns of the gating 686 keV γ ray, while Fig. 2(b) shows the spectrum for γ rays precede the 686 keV transition by at least 51 ns. The time before between the γ rays in Fig. 2(b) and the

2200 (a) Gate: 686 keV 1800 1400 590 <u>5</u>41 548 (¹⁹⁷Au) 279 (¹⁹⁷Au 1000 600 580 Counts 200 616 550 (b) Before Gate: 686 keV 450 350 250 541 580 548 (¹⁹⁷Au) 150 50 350 E_v 250 550 150 450 650 (keV)

121 keV transition indicated the presence of an isomeric level. A level scheme for 206 At, including a 10^- isomer, is proposed as shown in Fig. 3. The half-life of 410 ± 80 ns for this isomer was determined from fits to the coincidence time spectra between the two γ -ray groups lying above and below the isomer, respectively.

The nucleus 206 At has three protons and five neutron holes outside a 208 Pb core. The excited states of 206 At should be determined by excitations of the nine valence nucleons. Two-quasiparticle excitations are expected at low-lying states in this doubly odd nucleus, namely those arising from the configurations of $\pi h_{9/2} \nu f_{5/2}^{-1}$, $\pi h_{9/2} \nu i_{13/2}^{-1}$ and so on. The $[\pi h_{9/2}\nu i_{13/2}^{-1}]10^-$ isomeric states were observed systematically in the odd-odd bismuth and astatine nuclei [1,8]. From the systematic of the 10^{-} isomers in doubly-odd astatine nuclei, the isomer at 807 keV in ²⁰⁶At is most probably of the $\pi h_{9/2} \nu i_{13/2}^{-1}$ configuration. Assuming an electric dipole character for the 121 keV transition depopulating the 807 keV isomer, a reduced transition probability B(E1) of 1.92×10^{-6} Weisskopf units (W.u.) could be obtained for the 121 keV transition from the measured half-life of 410 ns, indicating a hindrance of 5.20×10^6 over the Weisskopf estimate for the 121 keV transition. This hindrance is very close to that for the corresponding E1 transition in ²⁰⁸At, and is typical for E1 transitions in the lead region. The above argument strongly supports the assignment of the $\pi h_{9/2} \nu i_{13/2}^{-1}$ configuration to the 807 keV isomer, and suggests the spin and parity values of 9^+ to the state at 686 keV. In [1], it

Fig. 2. γ -ray coincidence spectra gated on the 686 keV transition, (a) shows all the γ rays coincidence with the 686 keV transition, (b) shows the γ rays preceded by the 686 keV transition by at least 51 ns

Fig. 3. The proposed level scheme for ²⁰⁶At. All energies are in keV

was suggested that the 9⁺ state in ²⁰⁸At arises from the configurations of $\pi h_{9/2} \nu f_{5/2}^{-1} \otimes 2^+$ or $\pi h_{9/2}^3 \nu p_{1/2}^{-1}$, so the 9⁺ state in ²⁰⁶At might originate from the same configurations. From the result of the γ -ray angular distribution measurement, a quadrupole character is obtained for the 686 keV transition which feeds the lowest energy level in the level scheme. Considering the low-lying level structures in ²⁰⁴Bi [9] and ²⁰⁸At, the $\pi h_{9/2} \nu f_{5/2}^{-1}$ configuration may be assigned to the lowest level, to which a zero energy was set as a reference in the present work. The spin and parity value of 5⁺ was assigned to the ground state in ²⁰⁶At [10]. Maybe, the transition energy linking the 7⁺ state and ground state is too low to be observed in the present work.

At the 9⁺ state the feeding cascade is divided into two disconnected branches, which is very similar to the case in ²⁰⁸At. By comparing the level structures in ²⁰⁶At and ²⁰⁸At, we may get some qualitative conclusions. The levels shown on the left-hand side of the level scheme, are formed by proton excitations, and might have positive parities. The level complex feeding into the 10⁻ isomer might comprise mainly neutron-hole excitations, and these states might have negative parities. The possible negative-parity states with spins less than 14 may arise from configuration $\pi h_{9/2} \nu i_{13/2}^{-1} \otimes J^{\pi}$, where J^{π} stand for the 2⁺, 3⁺, 4⁺, \cdots excitations in the even Pb core. Six-quasiparticle excitations should be involved to interpret the higher-lying states shown on the right-hand side of the level scheme.

This work is supported financially by the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos. 19575059 and 19635030).

References

- 1. B. Fand et al., Nucl. Phys. A429, 296 (1984)
- 2. T. P. Sjoreen et al., Phys. Rev. C25, 889 (1982)
- 3. T. P. Sjoreen et al., Phys. Rev. C23, 272 (1983)
- 4. K. Dybdal et al., Phys. Rev. C28, 1171 (1983)
- 5. V. Rahkonen et al., Z. Phys. A284, 357 (1978)
- 6. T. Lönnroth et al., Z. Phys . A287, 307 (1978)
- 7. R. F. Davie et al., Nucl. Phys. A430, 454 (1984)
- 8. X. H. Zhou *et al.*, Phys. Rev. **C54**, 2948 (1996)
- 9. T. Lönroth et al., Phys. Scr. 23, 774 (1981)
- 10. Wapstra et al., Nucl. Phys. A432, 1 (1985)